Fault Diagnosis of Roller Bearing Based on PCA and Multi-class Support Vector Machine
نویسندگان
چکیده
This paper discusses the fault features selection using principal component analysis and using multi-class support vector machine (MSVM) for bearing faults classification. The bearings vibration signal is obtained from experiment in accordance with the following conditions: normal bearing, bearing with inner race fault, bearing with outer race fault and bearings with balls fault. Statistical parameters of vibration signal such as mean, standard deviation, sample variance, kurtosis, skewness, etc, are processed with principal component analysis (PCA) for extracting the optimal features and reducing the dimension of original features. The multi-class classification algorithm of support vector machine (SVM), one against one strategy, is used for bearing multi-class fault diagnosis. The performance of the method proposed was high accurate and efficient.
منابع مشابه
Fault diagnosis in a distillation column using a support vector machine based classifier
Fault diagnosis has always been an essential aspect of control system design. This is necessary due to the growing demand for increased performance and safety of industrial systems is discussed. Support vector machine classifier is a new technique based on statistical learning theory and is designed to reduce structural bias. Support vector machine classification in many applications in v...
متن کاملFault Diagnosis of Low Speed Bearing Based on Acoustic Emission Signal and Multi-class Relevance Vector Machine
This study presents fault diagnosis of low speed bearing using multi-class relevance vector machine (RVM) and support vector machine (SVM). A low speed test rig was developed to simulate various defects with shaft speeds as low as 10 rpm under several loading conditions. The data was acquired from the low speed bearing test rig using two acoustic emission (AE) sensors under constant loading (5 ...
متن کاملA DWT and SVM based method for rolling element bearing fault diagnosis and its comparison with Artificial Neural Networks
A classification technique using Support Vector Machine (SVM) classifier for detection of rolling element bearing fault is presented here. The SVM was fed from features that were extracted from of vibration signals obtained from experimental setup consisting of rotating driveline that was mounted on rolling element bearings which were run in normal and with artificially faults induced conditio...
متن کاملUsing Wavelet Support Vector Machine for Fault Diagnosis of Gearboxes
Identifying fault categories, especially for compound faults, is a challenging task in mechanical fault diagnosis. For this task, this paper proposes a novel intelligent method based on wavelet packet transform (WPT) and multiple classifier fusion. An unexpected damage on the gearbox may break the whole transmission line down. It is therefore crucial for engineers and researchers to monitor the...
متن کاملWavelet support vector machine for induction machine fault diagnosis based on transient current signal
This paper presents establishing intelligent system for faults detection and classification of induction motor using wavelet support vector machine (W-SVM). Support vector machines (SVM) is well known as intelligent classifier with strong generalization ability. Application of nonlinear SVM using kernel function is widely used for multi-class classification procedure. In this paper, building ke...
متن کامل